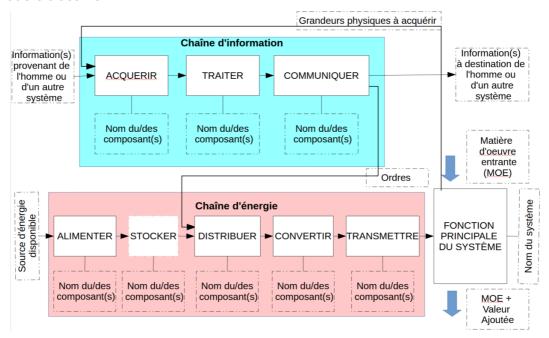
Chaînes fonctionnelles

Table des matières

I - Chaînes fonctionnelles	3
1. Définition	3
II - La chaîne d'information	4
1. La chaîne d'information	4
2. Informations externes	5
III - Différents capteurs	9
1. Différents capteurs	9
IV - La chaîne d'énergie	15
1. La chaîne d'énergie ou de puissance	15

I Chaînes fonctionnelles


1. Définition

Une chaîne fonctionnelle est un ensemble de constituants organisés de façon à **obtenir une tache opérative**.

• Par exemple: déplacer un objet ...

Elle est composée de deux parties appelées :

- Chaîne d'information. Elle permet de connaître l'état de la matière œuvre et/ou les consignes venant de l'utilisateur.
- Chaîne d'énergie qui permet à l'aide d'une énergie initiale de réaliser des actions sur la matière d'oeuvre.

Chaîne fonctionnelle

II La chaîne d'information

1. La chaîne d'information

Grandeurs physiques à acquérir

• Les grandeurs physiques à acquérir :

Elles représentent l'état de la matière d'œuvre du système (Niveau énergétique de batterie,...) ou l'état de l'environnement extérieur (Commande de l'accélération...)

Position d'un pont

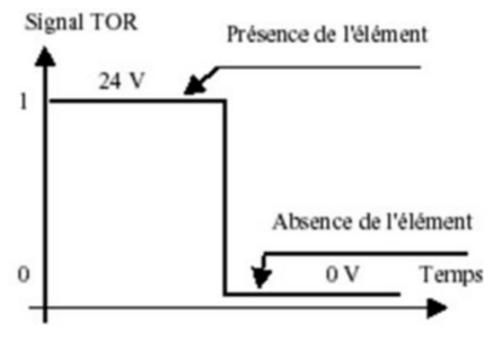
Vitesse d'un véhicule

Pression d'un pneu

Taux de lumière

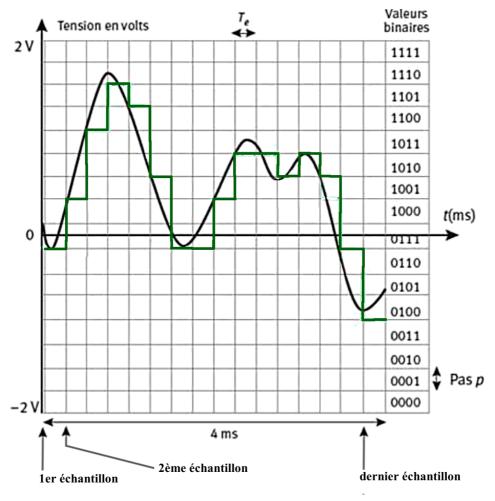
2. Informations externes

Les consignes


L'utilisateur communique avec le système par l'intermédiaire des consignes :

- E : Consignes d'exploitation (Marche, arrêt ...)
- R : Consignes de réglages (Sélecteur de vitesse, ...)
- C: Consignes de configuration (Mode automatique / Mode pas à pas / Mode manuel ...)

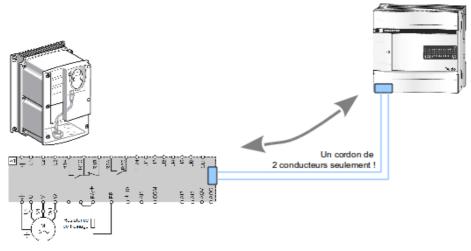
Nature des signaux transmis


Les signaux peuvent être de 3 natures différentes :

• Tout ou rien : Le signal à seulement 2 états 0 ou 1 et aucun autre état intermédiaire. Ces états peuvent correspondre par exemple à : activé/désactivé, 24V ou 0V, marche arrêt,...

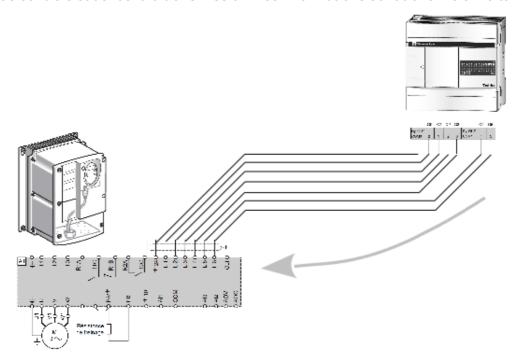
Liaison parallèle

• Analogique : Le signal peut prendre toutes les valeurs de l'ensemble des réels donc une infinité.



Signal analogique et numérique

• Numérique : Le signal peut prendre un nombre d'état déterminé normalement un multiple de 2. Par exemple 16 valeurs de 0 à 15 (0,1,2,..., 13, 14 et 15), il n'y a pas de valeur intermédiaire à virgule.


Mode de transmission

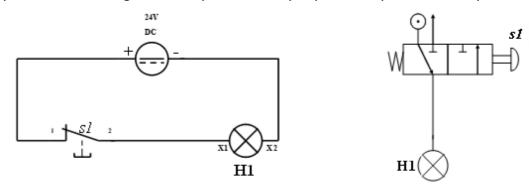
 Liaison série: On les oppose aux liaisons parallèles par le fait que les différents informations d'une donnée ne sont pas envoyés en même temps mais les uns après les autres, ce qui limite le nombre de fils de transmission ce qui limite le nombre de fils de transmission à 2 conducteurs.

Liaison série

• Liaison parallèle : Lors d'une liaison de type parallèle, les équipements à relier comportent autant de fils que les différents informations de données à transmettre, un ou plusieurs fils de contrôle cadencent la transmission. Les informations sont transmis simultanément.

Liaison parallèle

Comment acquérir les informations

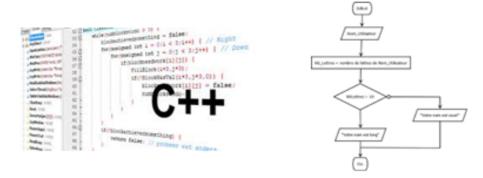

Le composant permettant d'acquérir des grandeurs physiques est un capteur. Il va saisir la grandeur physique puis la convertir en une image informationnelle pour la fonction TRAITER.

Le traitement de l'information est réalisé de 2 manières :

Le traitement câblé :

Les composants sont reliés directement pour réaliser la fonction attendue, le fonctionnement est difficilement modifiable.

Il existe plusieurs technologies, électrique, électronique, pneumatique ou mécanique.



Traitement câblé

Le traitement programmé :

Les informations transitent via un microprocesseur qui traite les informations en fonction du programme contenu dans une mémoire, le fonctionnement est facilement modifiable. Il existe une multitude de langage de programmation et de microprocesseur :

• Langage: C++, python (NAO), algorigramme, SYSML...

Langage

• Microprocesseur: Il est chargé d'exécuter le programme contenu dans la mémoire en fonction des données et de les transmettre à un bus.

Microprocesseur

• Microcontrôleur : C'est l'intégration d'un microprocesseur sur une carte électronique permettant l'interfaçage direct avec les capteurs et l'IHM.

Arduino, picaxe...

Arduino

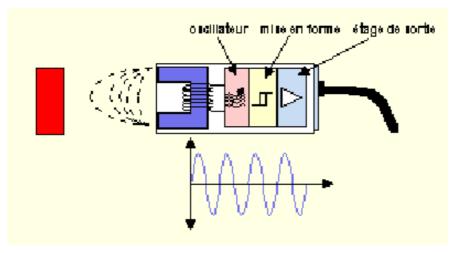
III Différents capteurs

1. Différents capteurs

Les détecteurs à contact

Détecteur électromécanique de position: appelé aussi interrupteur de position, il est surtout employé pour assurer la fonction détecter les positions.

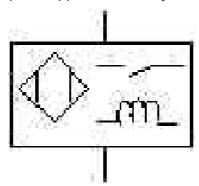
Il est constitué de microcontacts placés dans un corps de protection et muni d'un système de commande ou tête de commande.


Illustration détecteur à contact

Les détecteurs sans contact

Ce type de capteur est caractérisé par l'absence de liaison mécanique entre le dispositif de mesure et l'objet à détecter. L'objet est donc à proximité du capteur mais pas en contact contrairement à un détecteur de position.

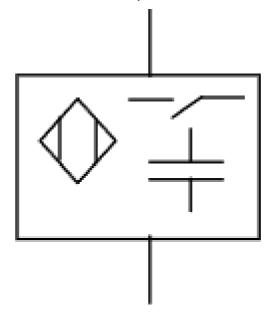
Les avantages de ce type de détecteur sont :


- Pas d'usure ; possibilité de détecter des objets fragiles...
- Détecteur statique (Pas de pièces en mouvement).
- Très bonne tenue à l'environnement industriel : atmosphère polluante

Fonctionnement sans contact

On distingue deux types de capteurs :

• Détecteur inductif : La technologie des détecteurs de proximité inductifs est basée sur la variation d'un champ magnétique à l'approche d'un objet conducteur du courant électrique.



Symbole capteur inductif

Illustration détecteur à contact

• Détecteur capacitif : Le fonctionnement du détecteur de proximité capacitif est basé sur la variation d'un champ électrique à l'approche d'un objet quelconque. Son domaine d'application est limité à la détection des liquides car son coût est élevé.

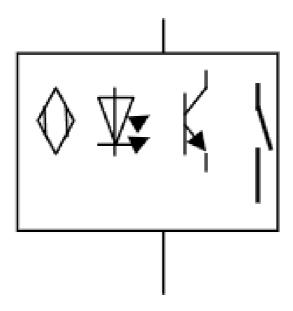

Symbole capteur capacitif

Illustration capteur capacitif

Les détecteurs photoélectrique

Il se compose essentiellement d'un émetteur de lumière associé à un récepteur photosensible.

Symbole capteur photoélectrique

Objet : TélécommandeEmetteur : Infrarouge

• Récepteur : Infrarouge

Illustration infrarouge

• Objet : Lumière extérieur

• Emetteur : Lumière

• Récepteur : Cellule photoélectrique

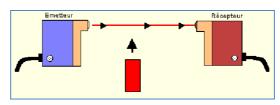
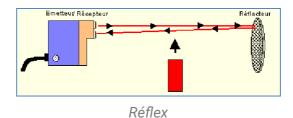
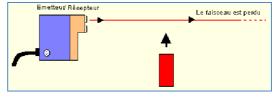


Illustration lumière

Le détecteur photoélectrique porte aussi le nom de barrière lumineuse. Pour réaliser la détection d'objets dans les différentes applications.


3 systèmes de base sont proposés.

Système barrage


Barrage

Système reflex

12

Système proximité



Proximité

Détecteur à Ultrason

Ce capteur peut remplacer dans certaines applications le capteur inductif et capacitif et peut détecter des objets jusqu'à quelques mètres.

Le capteur peut détecter tout type de matériau sauf les objets absorbant les ondes sonores tel que la ouate, le feutre,.... Il faut éviter les courants d'air qui détournent le signal de l'émetteur au récepteur ultrason.

Fonctionnement ultrason

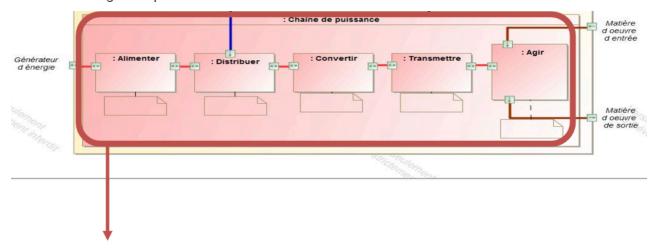
Illustration ultrason

Interrupteur à Lame Souple (ILS)


Un interrupteur à lame souple (ILS) est constitué d'un boîtier à l'intérieur duquel est placé un contact électrique métallique souple sensible aux champs magnétiques. Lorsque le champ est dirigé vers la face sensible du capteur le contact se ferme.

Symbole interrupteur à lame souple

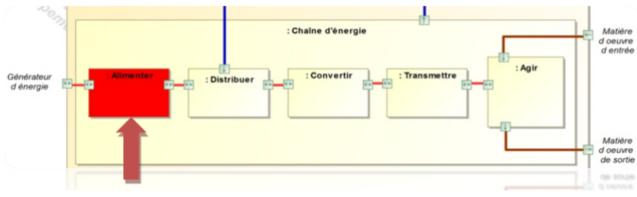
Illustration ultrason


Mise en situation avec un vérin

IV La chaîne d'énergie

1. La chaîne d'énergie ou de puissance

Structure de la chaîne d'énergie

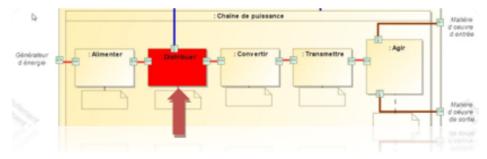

La chaîne d'énergie représente l'agencement des blocs du système permettant de fournir et d'amener l'énergie en quantité suffisante et sous la bonne forme afin de réaliser l'action désirée.

Chaîne de puissance

Fonction alimenter

Ce bloc indique comment le système est alimenté en énergie.

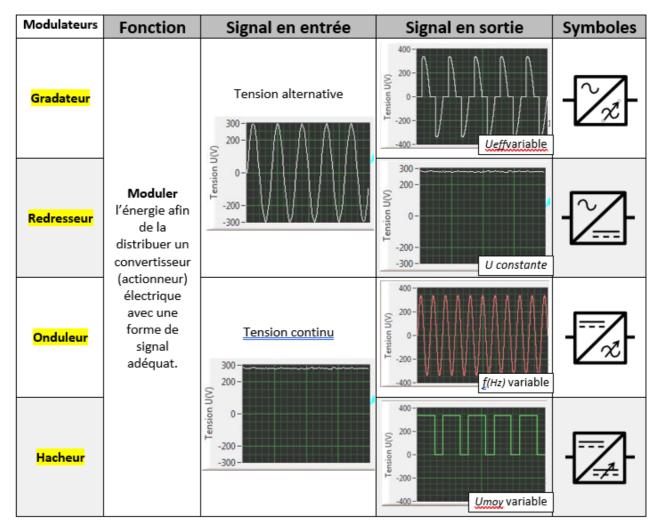
Alimenter


	Photo	Fonction	Caractéristiques	Symboles
<mark>Réseau EDF</mark>	©	Alimenter en énergie <mark>électrique</mark>	Courant alternatif triphasé 0 (400 V entre 2 phases, 230 V entre phase et neutre) ou monophasé 2 (230 V) à 50Hz	0 L1
Réseau pneumatique ou hydraulique		Alimenter en énergie pneumatique (air) ou hydraulique (huile)	Pression <i>P</i> (en bar ou Pa) Débit <i>Q</i> (en m³/s)	<u></u>
Batterie		Alimenter en énergie <mark>électrique</mark> préalablement stockée	Tension <i>U</i> (en V) et capacité (en Ah) Courant continu	+ -
Energies renouvelables		Alimenter localement en énergie <mark>électrique</mark> à partir d'énergie solaire ou éolienne	Tension <i>U</i> (en V) et puissance nominale <i>P</i> (en W)	Panneau solaire photovoltaïque Alternateur Triphasé (3)
Groupe électrogène		Alimenter localement en énergie <mark>électrique</mark> à partir d'énergie fossile		GS 3~

Eléments pour alimenter

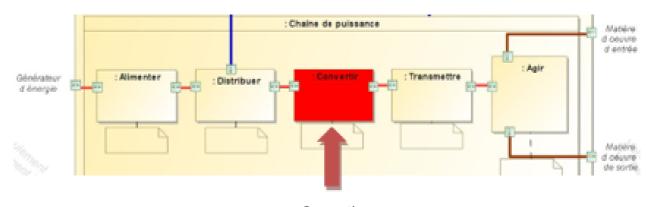
Fonction distribuer

Ce bloc explique comment l'énergie est distribuée au bloc convertir (actionneur).


Suivant les ordres de la chaîne d'information, il distribue l'énergie sous la forme qui convient.

Distribuer

Commande tout ou rien	Photo	Fonction	Caractéristiques	Symboles
Contacteurs, relais et composants électroniques Relais statique		Distribuer l'énergie électrique à partir d'un ordre de la chaîne d'info.	- Nombre de contacts et leurs positions Tension et intensité assignés - Tension de bobine Contacteur électronique	0
Distributeur pneumatique		Distribuer l'énergie pneumatique à partir d'un ordre de la chaîne d'info.	- Nombre d'orifices et de position - Type de commande	


Eléments pour distribuer tout ou rien

Eléments pour distribuer modulateur

Fonction convertir

Ce bloc décrit comment l'énergie est convertie d'une forme à une autre au sein du système.

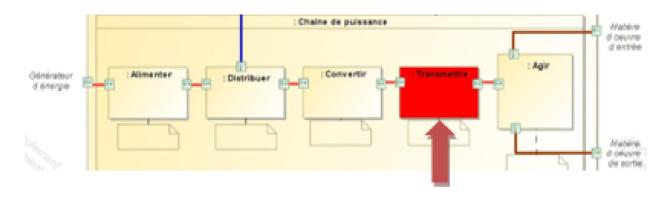

Convertir

	Photo	Fonction	Caractéristiques	Symboles
Moteur électrique à courant continu Moteur électrique à		Convertir l'énergie électrique en énergie mécanique de	Alimentation, fréquence de rotation en tr/min et couple	M
courant alternatif		rotation		3~
Moteur <u>brushless</u>		Convertir l'énergie électrique en énergie mécanique de rotation à vitesses élevées	Alimentation, fréquence de rotation en tr/min et couple	MS 3~
Vérin pneumatique ou hydraulique	# F S 80	Convertir l'énergie pneumatique ou hydraulique en énergie mécanique de translation	Diamètre et <u>course</u> en mm	
Résistance de chauffage		Convertir l'énergie électrique en énergie thermique (chaleur par effet Joule)	Puissance <i>P</i> et tension d'alimentation U	R
Ampoule		Convertir l'énergie <mark>électrique</mark> en énergie <mark>rayonnante</mark> (lumière)	Puissance <i>P</i> , tension d'alimentation <i>U</i> et éclairement	

Eléments pour convertir

Fonction transmettre

Ce bloc explique comment l'énergie fournie par l'actionneur est transmise jusqu'au bloc « AGIR » qui pourra réaliser l'action sur la matière d'œuvre.

Transmettre

	Photo	Fonction	Caractéristiques	Symboles
Transformateur électrique	AT .	Adapter l'énergie électrique en modifiant sa tension et son intensité	Tension d'entrée et de sortie	primaire Secondaire 220 V~ 24 V~
Echangeur thermique	THE REAL PROPERTY.	Transmettre la chaleur d'un fluide à un autre sans aucun contact entre les deux	Débit en m³/h Surface d'échange en m²	
Accouplement permanent ou non		Transmettre la vitesse et le couple entre deux arbres	Angle ou décalage entre les axes	-Q
Engrenages droits	96	Adapter l'énergie mécanique <mark>en</mark> modifiant sa vitesse et son couple	Nombre de dents Z Diamètres primitifs D	
Chaîne + pignon	00		Diamètres primitifs des deux roues <i>D1</i> et <i>D2</i>	Roue Pignon
Pignon crémaillère	0	Transformer l'énergie mécanique <mark>de rotation</mark> en énergie mécanique <mark>de</mark> translation	Diamètre primitif de la roue <i>D</i>	
Vis écrou			Pas de la vis P	51 51
Roue vis sans fin		Adapter l'énergie mécanique de rotation en <mark>modifiant sa vitesse, son couple et sa direction</mark>	Pas de la vis <i>P</i>	+
Réflecteur de lumière		Transmettre le maximum de luminosité	Forme et matière du réflecteur	

Eléments pour transmettre